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Abstract. The object-oriented style of programming facilitates pro-
gram adaptation and enhances program genericness, but at the expense
of efficiency. Automatic program specialization can be used to generate
specialized, efficient implementations for specific scenarios, but requires
the program to be structured appropriately for specialization and is yet
another new concept for the programmer to understand and apply. We
have unified automatic program specialization and inheritance into a
single concept, and implemented this approach in a modified version of
Java named JUST. When programming in JUST, inheritance is used
to control the automatic application of program specialization to class
members during compilation to obtain an efficient implementation.

This paper presents the language JUST, which integrates object-oriented
concepts, block structure, and techniques from automatic program spe-
cialization to provide both a generative programming language where
object-oriented designs can be efficiently implemented and a simple yet
powerful automatic program specializer for an object-oriented language.

1 Introduction

Inheritance is fundamental to most object-oriented programming languages. In-
heritance can add new attributes or refine existing ones. Using covariant spe-
cialization, fields and method parameters can even be refined to more specific
domains [15, 28]. Equivalent mechanisms for refining the behavior of a method
however only allow additional behavior to be added (e.g., method combination
such as “inner” and “around”); there is no mechanism for declaratively refining
the behavior of methods to something more specific — here, the programmer
must override the method with manually implemented code.

Partial evaluation is an automatic program specialization technique that from
a general program automatically generates an implementation specialized to spe-
cific values from the usage context. Partial evaluation and covariant specializa-
tion are intuitively similar: the domain of the entity that is being specialized is
restricted. Nevertheless, existing work in partial evaluation for object-oriented
languages has failed to bridge the gap between inheritance and partial evalu-
ation [2, 9, 16, 31–33]. Moreover, the object-oriented programmer faces a steep



learning curve when using partial evaluation, and applying partial evaluation
requires the target program to be structured appropriately for specialization.

In this paper we present a unification of inheritance and partial evalua-
tion in a novel generative programming language, JUST (Java with Unified
Specialization). The key concept in JUST is that conceptual classification us-
ing covariant specialization can control automatic specialization of the program.
To provide a unified view of inheritance and partial evaluation, JUST relies on
concepts found in the object-oriented paradigm, such as covariant specializa-
tion, block structure and customization, combined with techniques from partial
evaluation.

Contributions. The primary contribution of this paper is a unification of inher-
itance and partial evaluation, embodied by the generative programming language
JUST: From an object-oriented programming point of view, JUST allows the pro-
grammer to easily express an efficient implementation without compromising the
object-oriented design of the program. From a partial evaluation point of view,
JUST represents a novel approach to specialization of object-oriented programs
that sidesteps many of the complications otherwise associated with specializing
object-oriented programs, and that eliminates the need for separate declarations
to control the specialization process. Moreover, we have implemented a JUST-
to-Java compiler, and we use this compiler to demonstrate the efficiency of JUST
programs.

Organization. The rest of this paper is organized as follows. First, Sect. 2
compares inheritance and partial evaluation. Then, Sect. 3 presents the language
JUST and shows several examples of JUST programs, and Sect. 4 describes the
compilation of JUST to Java and several experiments. Last, Sect. 5 discusses
related work, and Sect. 6 presents our conclusions and future work.

2 Comparing Partial Evaluation and Inheritance

2.1 Partial evaluation

Partial evaluation is a program transformation technique that optimizes a pro-
gram fragment with respect to information about a context in which it is used,
by generating an implementation dedicated to this usage context. Partial evalu-
ation works by aggressive inter-procedural constant propagation of values of all
data types [22]. Partial evaluation thus adapts a program to known (static) in-
formation about its execution context, as supplied by the programmer. Only the
program parts controlled by unknown (dynamic) data are reconstructed (resid-
ualized). Compared to more standard forms of optimization, partial evaluation
can potentially give larger speedups, but only when guided by the programmer.

Partial evaluation of an object-oriented program is based on the specializa-
tion of its methods [33]. The optimization performed by partial evaluation in-
cludes eliminating virtual dispatches with static receivers, reducing imperative



class Color {

int r, g, b, a;

int pixel() {

return a<<24

| r<<16 | g<<8 | b;

}

}

class ColorPoint {

int x, y;

Color c;

void draw(Paint p) {

p.set(x,y,c.pixel());

}

}

Fig. 1. Java implementations of Color and ColorPoint.

specclass RedDraw {

c: RedC;

void draw(Paint b);

}

specclass RedC

specializes Color {

r==178; g==34; b==34;

}

(a) declaring specialization

aspect RedDraw {

private int Color.pixel_0() {

return a<<24 | 11674146;

}

private void ColorPoint.draw_0(Paint b) {

b.set(x,y,c.pixel_0());

}

... around advice for ColorPoint.draw

}

(b) specialized program

Fig. 2. Specializing colors using Pesto and JSpec

computations over static values, and embedding the values of static (known)
fields within the program code. The specialized method thus has a less general
behavior than the unspecialized method, and it accesses only those parts of its
parameters (including the this object) that were considered dynamic.

Typically, an object-oriented program uses multiple objects that interact us-
ing virtual calls. For this reason, the specialized methods generated for one class
often need to call specialized methods defined in other classes. Thus, partial eval-
uation of an object-oriented program creates new code with dependencies that
tend to cross-cut the class hierarchy of the program. This observation brings
aspect-oriented programming to mind; aspect-oriented programming allows log-
ical units that cut across the program structure to be separated from other parts
of the program and encapsulated into an aspect [23]. The methods generated by
a given specialization of an object-oriented program can be encapsulated into a
separate aspect, cleanly separating the specialized code from the generic code
(the specialized code is woven into the generic program during compilation).

Motivating example #1: colors. Consider the classes Color and ColorPoint

shown in Fig. 1 (for readability, we use int rather than byte to store color com-
ponents). If we often need to draw points with the color “firebrickred” (RGB
values 178, 34, and 34), it can be worthwhile to specialize the methods of these
classes for this usage context. We use the JSpec partial evaluator with the Pesto
declarative front-end [3, 33]. The usage context is specified declaratively using
the two specialization classes shown in Fig. 2(a). The specialization class RedDraw
indicates that the method draw should be specialized for the color described by



the specialization class RedC; this specialization class declares the known RGB
values (the alpha value is unknown and can still vary). Based on this informa-
tion, the partial evaluator generates specialized methods encapsulated into an
aspect, as shown in Fig. 2(b). The aspect uses an “around” advice on the method
ColorPoint.draw to invoke the specialized method draw 0 in the right context,
e.g., when the RGB values are 178, 34 and 34.

Partial evaluation for object-oriented languages (as embodied by JSpec with
the Pesto front-end) enables the programmer to easily exploit many kinds of
specialization opportunities, but nonetheless has some significant limitations.
First, the separate (declarative) control language is yet another language for the
programmer to learn. Second, relying on aspect-oriented programming to express
the residual program is conceptually unsatisfying compared to partial evaluation
for functional, logical, and imperative languages where residual programs can be
generated in the same language as the source program. Third, the complexity
associated with keeping track of side-effects on heap-allocated objects hampers
the understandability of the specialization process and makes it difficult for the
partial evaluator to support features such as multithreading and reflection. Last,
the propagation of specialization invariants follows the control and data flow of
the program, which can be obscured by the mix of loops, recursion, and complex
heap-allocated data structures often found in realistic programs.

2.2 Inheritance and covariance

Inheritance is fundamental to most object-oriented languages. From a concep-
tual point of view, inheritance supports hierarchical classification of entities in
the problem domain. Several concepts (classes) can be generalized into one con-
cept (the superclass), and conversely a single concept (a class) can be specialized
(subclassed) into a new concept (the subclass). From a technical point of view,
inheritance allows the implementation of one class to be derived from another
class: the subclass inherits all members of the superclass except those that the
class overrides locally. In some languages, inheritance can also covariantly spe-
cialize the type of attributes such as fields and method parameters [29]. In the
Beta language, where there is a strong focus on conceptual soundness, virtual
attributes are used to represent types that can be covariantly specialized in sub-
classes [27]. Here, covariant specialization is considered essential when modeling
domain concepts as inheritance hierarchies.

As a simple example of covariant specialization, consider the class Vector:

class Vector {

type T = Object; // covariant type attribute

T[] elements = new T[10];

T get(int index) { ... }

...

}

The type attribute T is declared to be Object, and in this respect this mechanism
is similar to parameterized classes as seen e.g. in GJ [5]. However, when this class
is subclassed, the attribute can be specialized covariantly:



class ColorVector extends Vector { type T = Color; }

The class ColorVector can now only contain elements of type Color (or any sub-
class). Conceptually, ColorVector is a more specific concept than Vector and
should therefore be a subclass of Vector. Covariant specialization is normally as-
sociated with either lack of static typing or lack of subclass substitutability [26],
but recent work indicates that by imposing restrictions on the use of classes that
can be specialized covariantly, this need not be the case [21, 35–37].

2.3 Unifying inheritance and partial evaluation

Partial evaluation specializes a method by constraining the domain of its param-
eters (including the this) from types to partially known values. Partial evalu-
ation can also specialize programs for abstract properties such as types [6, 19].
For an object-oriented program, such specialization would typically generate a
covariantly specialized method.

A subclass represents a more specific domain than its superclass. By defini-
tion, inheritance always specializes the type of the this, but, as noted above, the
types of the class members such as fields can also be (covariantly) specialized.

This similarity leads us to investigate whether inheritance and partial eval-
uation can be unified. Specifically, inheritance could be used to control how the
program is specialized using partial evaluation. Partial evaluation could then
automatically derive efficient method implementations according to the declara-
tion of each class. However, some partial evaluation scenarios require information
about concrete values to be specified, and thus covariant specialization would
have to be generalized to allow the programmer to express attributes that are
constrained to be equal to a given value. Moreover, mutual dependencies between
classes may necessitate that classes be specialized together.

Motivating example #2: polygons. Consider the hierarchy of geometric
figures shown in Fig. 3. The class RegularPolygon is a generic implementation
that can draw a regular polygon with any number of edges, any size (represented
by radius), and any orientation (angle). The corner points of the polygon are
represented using an array of point objects.

ab
r

n−sided polygon:
r=radius
a=angle
b=360/n

C

C+(0,r)

C+(r,0)C−(r,0)

C−(0,r)

RegularPolygon

TriangleSquare

Diamond

C

P0

P1
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P4=(r*cos(a+4*b),r*sin(a+4*b))
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Fig. 3. Efficient implementation of Diamond from RegularPolygon?



From a regular polygon, we wish to derive efficient implementations of the
Square, Triangle, and Diamond classes. In the classes Square and Triangle the
number of points is fixed, and thus the coordinates of the corner points can be
directly stored in fields as floating-point values. Instances of the class Diamond are
always drawn with a fixed angle, and hence no trigonometric computations are
needed. No previous automatic specialization technique that the author is aware
of can both specialize the representation (array vs. fields) and the implementa-
tion (the use of trigonometric functions) of a class such as RegularPolygon such
that it is made efficient in usage contexts that correspond to Square, Triangle,
and Diamond (see related work in Sect. 5 for a comparison with existing tech-
niques).

3 JUST

3.1 Overview

The JUST generative programming language unifies inheritance and partial eval-
uation into a single abstraction. Covariant specialization with singleton types is
used to control specialization for both types, primitive values, and partially static
objects. Block structure is used to predictably propagate specialization invari-
ants using lexical scoping and furthermore allows a hierarchy of inner classes to
be specialized together for common invariants.

Partial evaluation is used to specialize all members of all classes for invari-
ants from type attributes visible in the lexical context, invariants from method
calling contexts, and constants embedded inside methods. Covariant specializa-
tion allows type attributes to be refined in subclasses and hence allows partial
evaluation to incrementally specialize the implementation of each method as
new subclasses are added to the program. In effect, conceptual modeling using
covariant specialization defines additional invariants that further optimizes the
implementation of each class.

One of the primary goals in the design of JUST has been to balance the power
of the built-in specialization mechanisms with simplicity of use, in order to make
the semantics of the language easy to understand for the programmer. In par-
ticular, since partial evaluation for object-oriented languages normally requires
expensive and complicated static analyses to determine how the program can
be specialized [2, 30, 32, 33], limitations have been imposed on the specialization
process. Specifically, specialization is done based on a combination of mutable
local variables and immutable object values reified as types. The restriction to
immutable object values alleviates the partial evaluator from tracing side-effects
on heap-allocated data.

The specialization performed automatically by JUST is highly aggressive,
can give a massive increase in code size, and is not guaranteed to terminate.1

1 As is common in partial evaluation, there is no limit on the amount of resources that
can be used to optimize the program; imposing a limit would in some cases result in
overly conservative behavior.



class Draw {

class Color {

type RT, GT, BT, AT = int;

RT r; GT g; BT b; AT a;

int pixel() {

return a<<24|r<<16|g<<8|b;

}

}

class ColorPoint {

type ColorT = Color;

ColorT c;

int x, y;

void draw(Paint b) {

b.set(x,y,c.pixel());

}

}

}

class RedDraw extends Draw {

class Red extends Color {

type RT=178, GT=34, BT=34;

}

class RedPoint extends ColorPoint {

type ColorT = @Red;

}

}

class RedDraw extends Draw {

class Color { ... }

class ColorPoint { ... }

class Red extends Color {

type RT=178, GT=34, BT=34, AT=int;

AT a;

int pixel() {

return a << 24 | 11674146;

}

}

class RedPoint extends ColorPoint {

type ColorT = @Red;

ColorT c;

int x, y;

void draw(Paint b) {

b.set(x,y,c.Red::pixel());

}

}

}

(a) programmer-written code (b) compiler-generated code

Fig. 4. Specialized color example, in JUST

Thus, the programmer must understand the principles of automatic program
specialization (just like programmers must have a basic understanding of types to
use generics). For example, to avoid generating inefficient code, the programmer
has to control the amount of specialization performed by the compiler, through
the use of covariant type declarations. For this reason, JUST is only appropriate
for implementing performance-critical parts of programs.

3.2 Basic example

We now revisit the color and colored point example of the previous section. The
classes Color and ColorPoint are nested within the top-level class Draw, as shown
in Fig. 4(a). In JUST, nested classes can be specialized together for a common
set of invariants by subclassing their enclosing class.

In the class Color, the type attributes RT, GT, BT, and AT are used to con-
strain the types of the fields that hold the RGB and alpha values. In JUST, the
implementation of any method that refers to values qualified by type attributes



can be specialized by covariantly specializing these type attributes. Indeed, the
fields r, g, b, and a are all declared using type attributes. Similarly, in the class
ColorPoint the reference to the Color object is qualified by a type attribute.

An implementation that draws “firebrickred” points can be declared by co-
variantly specializing the type attributes, as shown in the class RedDraw. Here,
the types of the fields that hold the RGB values are specialized to concrete
integers, and the type of the field that references a color is specialized to a “fire-
brickred” color (the syntax “@T” means an exact reference to an instance of the
class T, i.e., subclasses of T are not allowed). The intermediate result of compiling
RedDraw is shown in Fig. 4(b). For each class, the members of the superclass are
inherited and specialized. Fields that have constant values are no longer needed,
and are eliminated. A direct call is generated to the specialized pixel method
from within the draw method (using the “class::name” syntax, which indicates
a statically bound, non-virtual call).

The JUST compiler works by first performing a source-to-source specializa-
tion, exactly as was illustrated in this example, and then compiling the special-
ized source code to Java. This approach allows the programmer to easily verify
the quality of the specialization performed by the compiler.

3.3 Syntax

The syntax of JUST is a fairly minimal Java subset extended to support uni-
fied specialization. A JUST program consists of block-structured classes with
fields and methods. Methods can use basic statements such as assignment, con-
ditionals, and while-loops. For simplicity, JUST currently omits many elements
of the Java language, such as constructors, try/catch, interfaces, switch state-
ments etc. Some of these elements have already been explored in the context
of partial evaluation and would be trivial to implement (e.g., constructors and
switch statements), whereas others remain unexplored and would require new
techniques to be developed (e.g., try/catch).

JUST extends Java with type members which are used to specify types that
can be covariantly specialized by subclasses. A type member is declared as a class
member using the syntax “type NAME=EXP;” which assigns the value of EXP to the
type named NAME. The expression EXP can refer to type members and classes from
the lexical scope. If NAME was defined in a superclass, the type is covariantly spe-
cialized: the value of EXP must be a subtype of the value denoted by NAME in the
superclass. Syntactic elements used to denote types can be manipulated as val-
ues, e.g., “type x=int;” is valid syntax; similarly the Java expression “C.class”
is simply written “C” in JUST. The intermediate source programs produced by
the JUST compiler use an extended syntax where values are substituted for
uses of type members everywhere in the program; this syntax is not currently
supported in the input language.

JUST also introduces three new operators, @, ::, and lift. The operators
@ and :: have already been described in the context of the colors example.
The operator lift converts its argument to a dynamic value (in the sense of



C <: C C <: D D <: E
C<:E

class C extends D {. . . }

C<:D

class C extends D {. . . }

C.E<:D.E
1, 2, 3, . . . <: int , similarly for boolean, float etc.

new C(. . . ) <: C
∀fi ∈ C : vi <: v′

i

new C(. . . , fi = vi, . . .) <: new C(. . . , fi = v′

i, . . .)

new C[n]= {. . .} <: C[ ]
n = n′ ∧ ∀i ∈ 0 . . . n − 1 : vi <: v′

i

new C[n]= {. . . , vi, . . .} <: new C[n′]= {. . . , v′

i, . . .}

Fig. 5. JUST subtyping rules

partial evaluation), which inhibits aggressive operations over the value (see the
description of semantics in Sect. 3.5 for details).

3.4 Types

In JUST, classes and methods can be overridden by a subclass, and type at-
tributes can be specialized covariantly by a subclass. Although the specialization
process propagates information from type declarations, JUST does not currently
have a type system and thus the covariant declarations are not checked. The in-
tention is that the type rules should be based on those found in the Beta family
of languages [15, 27]. These languages provide static typing in the presence of
covariant specialization using type attributes, and have block structure similar
to although not identical to JUST. Covariant specialization of fields and pa-
rameters is known to complicate type checking, and features such as singleton
types implies that a type system would be undecidable unless restrictions were
imposed on the language; we return to these issues Sect. 6.

The subtype relation used in JUST is shown in Fig. 5. Briefly, subclasses are
subtypes (nominal subtyping), the subtyping relationship of inner classes follows
the subclassing relationship of their enclosing classes, and primitive values are
subtypes of their type (which, as in Java, is not a subtype of Object). Object
instances are subtypes of their class, and an object instance is a subtype of
another instance of the same class if the values of each of their fields are subtypes
(structural subtyping). Subtyping for arrays works in a similar fashion.

3.5 Semantics

Evaluation of JUST programs takes place both at compile-time and at run-
time, so there are two parts to the semantics: the compile-time (specialization)
semantics and the run-time semantics. We use partial evaluation terminology
to describe the semantics of JUST. We say that an expression which during
compilation evaluates to a concrete value (an object, array, or a primitive value
such as an integer or a boolean) has a static type. Conversely, an expression



1. Propagate types and members.
(a) All type members in the program are evaluated and transformed into im-

mutable values.
(b) All uses of type members are resolved, and all classes and all superclass fields

not overwritten locally are copied down.
2. Inline objects and arrays.

(a) For each class, each field with a static type of an array instance is replaced by
fields that represent the contents of the array.

(b) Similarly, each field with a static type of an object instance is replaced by
fields that represent the contents of the object. The methods of the object are
inlined into the class under fresh names.

(c) The process is applied recursively to the fields that are generated at each step.
3. Specialize methods and remove static fields.

(a) For each class, copy down those methods of the superclass that are not over-
written locally.

(b) For each method, specialize the statement that it contains based on the types
of its parameters, any types from the lexical context, and any constants con-
tained within the method. Imperative statements are specialized using stan-
dard techniques. A method invocation with a known receiver is transformed
into a direct invocation of the receiver method specialized for its arguments.
Access to fields with static types is removed, access to the subcomponents of
arrays or objects that have been inlined is replaced with direct access to the
corresponding field.

(c) Any field qualified by a static type is removed.

Fig. 6. Compile-time semantics of JUST

which during compilation evaluates to a class or a type that describes primitive
data (e.g., the type int) has a dynamic type.

A critical property of JUST is that types help control side-effects both at
compile-time and at run-time. Specifically, when a field has a static type, its value
is determined by the type: assignment to the field is not allowed, and the value
read from the field is given by the type. Conversely, when a field has a dynamic
type, assignments to and reads from the field can simply be residualized by the
specialization process. For this reason, side effects on fields are not relevant to
the specializer, and an alias analysis is not needed (unlike standard approaches
to program specialization for imperative languages [4, 22, 33]).

We do not explicitly define a run-time semantics, but rather refer to the
compilation of JUST into Java described in Sect. 4. Basically, a JUST program
written without the use of type members and with lift operators around all
embedded constants evaluates almost exactly like the equivalent Java program
(which would be obtained simply by removing all uses of the lift operator).
The difference is that in JUST methods and inner classes are customized (based
on dynamic types) for each class, so calls to the reflection API might return
different results in JUST and Java.

The compile-time semantics of JUST are summarized in Fig. 6. The first step
is to propagate types and members. For each class, the expression associated with



each type member is evaluated. Such expressions can only refer to lexically visible
type members and classes, but can contain arbitrary computations that are
evaluated using standard execution semantics. Side-effects are allowed on objects
when evaluating these expressions, but are always local to the expression since it
can only refer to classes and types from the lexical context. After evaluating the
type expression, the compiler can simply inspect the computed value and the
local heap that it resides in. The resulting value is converted into a type value
through a recursive process that extracts objects and arrays from the heap and
converts them into values, in effect converting the value into an immutable tree
structure later used as a template for recreating copies of the data. For example,
the type declaration

type L = (new Line()).setEndPoints(new Point(),new Point());

causes the type L to be bound to an immutable representation of a Line object
with two specific Point objects as its endpoints:

type L = Line(Point(*,*),Point(*,*));

(Note that the coordinates of the Point objects are unspecified, and hence appear
as dynamic in the value, denoted “*”.) Tree structures are usually sufficient
for representing the invariants needed for partial evaluation [3], but have the
disadvantage that cyclic data and aliasing cannot be represented. Cyclic data
causes a compile-time error, whereas aliased objects are duplicated (e.g., DAGs
are converted into trees by duplicating shared nodes); since the object structures
represented by type expressions in practice often are quite simple, this has so far
not been a problem. As a last step, after all type members have been resolved,
all classes and fields not overridden are copied down.

The second step is to inline objects and arrays with static types into the
class in which they are used as qualifiers on fields. (Allowing inlining of objects
into methods is considered future work). A field that is qualified by an object
or array static template value is transformed by replacing it with the dynamic
parts of the object or array value. For example, given the declaration of the type
L from the previous paragraph and the declaration “L lin1, lin2;” a number
of new fields are introduced at the same program point:

int lin1$p1_x, lin1$p1_y, lin2$p2_x, lin2$p2_y;

(assuming that the class Point contains two fields, x and y). Any methods from
the objects are also introduced as new members, e.g.

int lin1$p1_getX() { return #(C,lin1$p1).x; }

where #(C,lin1_p1) is a placeholder object value manipulated during special-
ization and eliminated during the last compilation step. Arrays are transformed
similarly, with each field being numbered according to its index.

The last step is to specialize methods and remove fields bound to static values
(such fields will not be referred to from the specialized program). The methods



of the superclass, which have already been specialized for any types in the su-
perclass, are copied down. Delaying method copy-down until this point makes
specialization incremental. The body of each method is specialized in an envi-
ronment defined by the types of its lexical context and its formal parameters.
Constants embedded within the method are also considered static for special-
ization (the unary operator lift can be used by the programmer to convert any
static value into a dynamic value, thus limiting the amount of specialization).
As described earlier, at this level side effects to fields are always residualized, so
only local variables are modified during specialization.

The specialization of imperative computations is standard (loops are un-
rolled, conditionals reduced, constants are propagated aggressively, etc.). The
specialization of constructs that manipulate objects is as follows. A method in-
vocation with a known receiver is specialized by generating a direct call to a
specialized version of this method; the specialized method is generated based on
the bindings of its formal parameters. A method cache indexed by the concrete
types of the formal parameters is used to allow reuse of specialized methods (and
enable specialization of recursive methods), as is common in partial evaluation.
A method invocation with an unknown receiver is simply residualized (it can be
ignored since it cannot have side-effects that affect the specialization process).
Field access to dynamic objects is residualized, and field access to static objects
is transformed based on the placeholder object value. For example, the method
lin1$p1_getX() above becomes:

int lin1$p1_getX() { return C.this.lin1$p1_x; }

This transformation is not legal if the placeholder object value escapes the scope
in which the field to which it refers is defined. In this case, a compile-time error
is generated. Similarly, a compile-time error is generated if references to a static
object are residualized in the program. We observe that since static objects only
exist at compile-time, an object identity comparison between a static object and
a dynamic object always evaluates to false and hence can be reduced by the
compiler. Handling compile-time errors induced by the specialization process
is obviously non-trivial for the programmer, and JUST offers no improvement
over standard partial evaluation techniques in this sense; we envision that a
specialization-time debugger integrated into the compiler can help the program-
mer understand the source of the error, but such a tool is future work.

Regarding the amount of specialization performed by the JUST compiler,
we note that JUST is sufficiently powerful for specializing interpreters. In fact,
interpreter specialization can be performed in at least two different ways. First,
consider a bytecode interpreter written as a recursive method parameterized by
the program counter [34]. Given that the program counter is static, a specialized
method can be generated for each value of the program counter, which allows the
interpreter to be specialized. Second, consider an interpreter for a structured lan-
guage implemented with a separate class for each syntactic construct [3]. Given
that the program is static, object inlining reduces the entire object structure
to a set of mutually recursive methods (one for each AST node) that call each
other in a fixed manner. In both cases, the interpretive overhead is eliminated.



class Polygon extends Object {

type CornersT = Point[];

CornersT corners;

type AngleT = int;

AngleT a;

...

void fix() {

int c=corners.length;

int s=360/ncorn;

int j=0, dx, dy;

while(j<c) {

dx=Math.cos(a+(j*s))*radius;

dy=Math.sin(a+(j*s))*radius;

corners[j].setX(center.x+dx);

corners[j].setY(center.y+dy);

j=j+1;

}

}

}

class Square extends Polygon {

type CornersT = new Point[] {

new Point(), new Point(),

new Point(), new Point() };

}

class Diamond extends Square {

type AngleT = 0;

}

class Diamond extends Square {

int corners$0_x;

int corners$0_y;

// more pairs of inlined fields

...

void fix() {

int dx, dy;

dx=radius;

corners$0_Point_setX(center.x+dx);

corners$0_Point_setY(center.y);

dy=radius;

corners$1_Point_setX(center.x)

corners$1_Point_setY(center.y+dy);

...

// more unrolled loop bodies

...

}

void corners$0_Point_setX(int i) {

corners$0_x=i;

}

void corners$0_Point_setY(int i) {

corners$0_y=i;

}

// more pairs of inlined methods

...

}

(a) programmer-written code (b) compiler-generated code for Diamond

Fig. 7. The regular polygons example resolved, using JUST

3.6 Example resolved: regular polygons

Regular polygons were introduced as a motivating example in Sect. 2.3. Using
JUST, an efficient implementation of the Diamond class can be derived from the
Polygon class. The method fix shown in Fig. 7(a) fixes the points of the regular
polygon, based on the number of points, the orientation (angle), and the radius.
The class Square specifies that the array of points has length four and contains
concrete point instances. The class Diamond further specifies that the orientation
is zero degrees. Based on these declarations, the compiler generates the special-
ized implementation of the fix method shown in Fig. 7(b). All coordinates are
stored in local fields, and the use of trigonometric functions has been eliminated.
As described in Sect. 4, in our experiments the optimized implementation is from
12 to 21 times faster than the generic implementation.
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Fig. 8. Efficient implementation of matrices in OoLaLa

3.7 Large example: linear algebra

The OoLaLa linear algebra library has been designed according to an object-
oriented analysis of numerical linear algebra [25]. Compared to traditional linear
algebra libraries, OoLaLa is a highly generic, yet simple and streamlined, im-
plementation. However, as the designers point out, the genericness comes at a
cost in terms of performance.

In the OoLaLa library, matrices are classified by their mathematical proper-
ties, for example dense or sparse upper-triangular. A matrix is represented using
three objects from different class hierarchies, as illustrated in Fig. 8. The class
Matrix acts as an interface for manipulating matrices, by delegating all behav-
ior specific to mathematical properties to an aggregate object of class Property.
Subclasses of the abstract class Property define, for example, how iterators tra-
verse matrix elements (e.g., by skipping zero elements in sparse matrices). The
Property classes delegate the representation of the matrix contents to an object of
class StorageFormat. The concrete subclasses of the abstract class StorageFormat

all store the matrix elements in a one-dimensional array, and define a mapping
from ordinary matrix coordinates to an index in this array. This decoupling of
a single matrix into three objects from separate class hierarchies is a use of the
bridge design pattern [17].

To optimize for the case where matrices are dense, we define the classes
FixedDenseProperty and DenseMatrix. In FixedDenseProperty the storage format
is a DenseFormat instance which is inlined into the class definition. Similarly,
in DenseMatrix, the property is a FixedDenseProperty instance which is inlined
into the class definition. In the resulting implementation of DenseMatrix, all data
is available locally in the object, and all virtual method calls can be replaced
with direct procedure calls. Any standard use of the bridge design pattern can be
specialized in this way. As described in Sect. 4, in our experiments the optimized
implementation is from 2 to 5 times faster than the generic implementation.



3.8 Modularity

JUST requires that classes which need to be specialized together must also be
declared together as inner classes. Declaring classes together allows them to be
specialized for common invariants when their enclosing class is subclassed. Such
structuring of the program, although appropriate in some cases (as seen in the
OoLaLa example), may go against the conceptual modeling of the problem
domain. In this case, a class should be declared in the conceptually appropriate
scope; the class Point was for example a globally visible class in the regular
polygons example. Type attributes can be used to specify “hooks” where further
specialization can take place. If the class is to be specialized in a given scope,
it can simply be subclassed into this scope (provided that it is lexically visible).
The type attributes can be bound as appropriate, for example to other attributes
visible in the enclosing scope, effectively allowing the class to be specialized for
local invariants.

3.9 Reflection, multithreading, and dynamic loading

Reflection allows the program to dynamically decide what methods to call or
fields to operate on, based on data computed while the program is running,
Partial evaluation can be used to reify reflective operations as efficient, direct
operations, as demonstrated for Java by Braux and Noyé, semi-automatically
using a generating extension [6]. However, the dynamic nature of reflection and
its ability to cause unpredictable control flow and side-effects make static anal-
ysis of such programs very difficult, and no partial evaluators that the author
is aware of can specialize both (imperative) program operations and reflective
operations together. Nonetheless, JUST specialization is based on immutable
data, and control flow is determined on-line during specialization, for which rea-
son reflection can be specialized in JUST, essentially using the rules proposed by
Braux and Noyé. In principle, any Java-style reflective operation based on static
values can be reified into equivalent non-reflective operations. Currently, JUST
only supports reifying Java-style operations for reading and writing the values
of fields; completely supporting the full Java reflection API requires addressing
numerous technical issues which are out of the scope of this paper.

Multithreading is used pervasively in modern applications, but is a problem
for traditional partial evaluators, since side-effects between threads can cause
unpredictable modifications of the store that cannot be performed in advance at
compile time. However, since JUST specialization is based on immutable heap
data (side-effects to local variables are thread-local since JUST uses Java’s thread
model), each thread implementation can be specialized individually based on the
invariants declared in its lexical context. In addition to specializing individual
threads, JUST can specialize the interaction between multiple threads, since
invariants specified using covariant type declarations can be safely propagated
between threads.

Dynamic class loading poses a problem for traditional partial evaluators,
since they essentially rely on a whole-program assumption in order to track



side-effects. Some partial evaluators only target a program slice, and require the
user to specify the behavior of the code outside the program slice, including
any code that could be dynamically loaded [10, 33]. Nonetheless, since JUST
specialization is based on immutable data and furthermore is local to each class,
dynamic class loading does not invalidate the specialization performed by the
JUST compiler, and can be performed safely in specialized programs.

4 Compiling JUST to Java

4.1 Compilation process

JUST has been designed to aggressively and unconditionally optimize the code
provided by the programmer to generate a specialized implementation of each
class. While specialization can be useful when applied to performance-critical
parts of programs, applying specialization globally would normally result in ei-
ther non-termination or code explosion. For this reason, it must be possible to
only apply specialization to selected parts of the program, a feature normally
referred to as modular specialization [10]. Since JUST programs are compiled to
Java, the performance-critical parts of a program can be written in JUST, and
the other parts of the program in Java.

The translation from JUST to Java source code works as follows. In a spe-
cialized JUST program, all class members have been customized and cloned
in every class. This code duplication simplifies the JUST to Java compilation
process, since inheritance between classes can be substituted for interface in-
heritance. Each JUST class compiles to a Java class that by default inherits
from java.lang.Object (a thread class would inherit from java.lang.Thread).
All methods are made public, and all fields have package visibility. Every JUST
class implements a Java interface that has the same methods as the JUST class.
This interface extends the interface generated for the JUST superclass. If the
JUST class overrides a class from the superclass of the enclosing class, the in-
terface also extends the interface of this class. Type attributes are not needed
in the Java program, and are ignored by the JUST to Java compiler. Fields are
compiled directly to Java fields: since there is no Java inheritance between the
generated classes, fields are declared anew in each class, and can thus be covari-
antly specialized. Methods require special care since covariant specialization of
the formal parameters and return type is not possible in Java. For this reason,
the most general type (the one found highest in the hierarchy of Java inter-
faces) is used; downwards casts are inserted where needed for parameters and
the return value. Most statements and expressions translate straightforwardly to
equivalent Java counterparts. Direct method calls are represented using a class
cast to the type in question (this is needed since the callee method might not be
visible in the declared interface of the receiver object).

Inlining is not performed by the JUST to Java compiler, since most Java
virtual machines perform aggressive inlining dynamically, adapted to the charac-
teristics of the physical machine that the program runs on. To facilitate inlining,



Table 1. Benchmark programs and how they are specialized (†: micro-benchmarks)

Benchmark Specialization target Primary effect of specialization

Polygons calls to fix trigonometric operation elimnation, object inlining
OoLaLa norm1A operation3 object inlining, decision removal
Reflect† reflective field access reification of reflection as normal operations
Multi† access to shared data shared data inlining, synchronization elimination
Visitor visitor traversal tree inlining of visitor into binary tree [33]

methods that are not overridden are declared final by the compiler. Nonethe-
less, performing inlining in the compiler would probably be advantageous in
some cases.

4.2 Experiments

To test the performance of programs written in JUST, we have compared the
examples presented in Sect. 3, a program based on the visitor design pattern, and
microbenchmarks where reflection and access to thread-shared data can be elim-
inated, to equivalent programs implemented from scratch in Java. These bench-
mark programs are summarized in Table 1 (note that two of the benchmarks
are microbenchmarks).2 The Java programs are run both in their unmodified
form and (where possible) after specialization with the JSpec partial evaluator
for Java [33]. The unspecialized versions of the JUST classes have performance
roughly equivalent to the unspecialized Java programs, and are not included in
the experiments.

The experiments are performed on an x86 and a SPARC. The x86 is running
Linux 2.4 and has a single 1.3GHz AMD Athlon processor and 512Mb of RAM.
The SPARC is a Sun Enterprise 450 running Solaris 2.8, with four 400MHz
Ultra-SPARC processors and 4Gb of RAM. Compilation from Java source to
Java bytecode is done using Sun’s JDK 1.4 javac compiler. All programs are
run on x86 using IBM’s JDK 1.3.1 JIT compiler and on SPARC using Sun’s
JDK 1.4.0 HotSpot compiler in “server” compilation mode. Each benchmark
program performs ten iterations of the benchmark routine, and discards the
first five iterations to allow adaptive compilers to optimize the program. All
execution times are reported as wall-clock time measured in milliseconds.

The benchmark results are shown in Table 2. As can be seen, the performance
of JSpec-specialized Java programs and JUST programs exceed that of the orig-
inal Java programs (the micro-benchmarks could not be specialized using JSpec

2 We do not use standard benchmarks, because programs from standard benchmark
suites (e.g., SpecJVM98) usually either contain no opportunities for specialization
or are structured in a way that is incompatible with specialization.

3 Compared to the example of Sect. 3, the OoLaLa library is also specialized for a
specific mode of iteration. Note that all versions of the OoLaLa library used in these
experiments were (re)implemented faithfully by the author based on information
from Luján’s MS [24], since the implementation described by Luján et. al. [25] is not
publicly available.



Table 2. Benchmark results (times are reported in seconds, †: micro-benchmark)

Results for x86 Results for SPARC

Java Speedups Java Speedups
Gen. JSpec JUST G/JS JS/JU G/JU Gen. JSpec JUST G/JS JS/JU G/JU

Polygons 9.40 0.78 0.78 12.01 1.00 12.01 59.28 2.77 1.85 21.40 1.50 32.04
OoLaLa 6.22 2.81 1.17 2.21 2.40 5.32 47.84 21.23 11.76 2.30 1.81 4.01
Reflect† 49.77 0.14 355.5 97.70 0.481 203.12
Multi† 9.17 0.30 30.56 18.30 0.08 228.75
Visitor 2.15 1.32 1.32 1.63 1.00 1.63 14.11 4.14 4.14 3.40 1.00 3.40

since it does not support reflection and multi-threading). The microbenchmarks
for reflection and multithreading show extreme speedups that are not represen-
tative of the kinds of speedups that can be expected on realistic programs, but
nonetheless serve to illustrate the relevance of specializing such operations. A
thorough investigation of the issues related to specializing programs based on
multithreading and reflection are out of the scope of this paper. For the real pro-
grams, the most significant speedups (12 times and 32 times) are observed for
the Polygons benchmark, where the use of trigonometric computations is elimi-
nated. Furthermore, in the Polygons benchmark on SPARC and in the OoLaLa

benchmark on both architectures, JUST provides a significant speedup over the
JSpec-specialized programs (from 1.5 to 2.4 times). Last, we note that for the
visit example JUST generates almost exactly the same Java code as the special-
ized code output by JSpec, and therefore offers no additional advantage.

5 Related Work

JUST is directly inspired by programming languages that support covariant
specialization [15, 21, 27–29,35]. Like these languages, JUST allows the types of
fields and method parameters to be covariantly specialized. But unlike these
more standard programming languages, covariant specialization can be done to
specific values, which allows more precise specifications to be declared, similar to
Cardelli’s power type [7]. An obvious limitation of JUST compared to these other
languages is the lack of a type system (see future work). Unification of inheri-
tance and partial evaluation is also seen in the language Ohmu, where function
invocation, subclassing, object instantiation, and aspect weaving all are captured
by a single mechanism, the structure transformation, which is based on partial
evaluation techniques [20]. Compared to JUST, manual meta-programming is
however often needed to achieve specialization effects. Moreover, Ohmu has only
been implemented as a source-to-source transformation system.

C++ templates can be used as a generative programming language: by com-
bining template parameters and C++ const constant declarations, arbitrary
computations over primitive values can be performed at compile time [11, 38].
Although the declaration of how to specialize is effectively integrated with the
program in the form of template declarations, this approach is more limited in



its treatment of objects than what we have proposed. For example, objects can-
not be dynamically allocated and manipulated. Furthermore, the program must
be written in a two-level syntax, thus implying that static and dynamic code
must be separated manually, and functionality must be implemented twice if
both generic and specialized behaviors are needed.

JUST only specializes for immutable object values, similarly to partial evalu-
ation for functional languages, where there is no need to keep track of side-effects
on heap-allocated data [22]. The object and array inlining performed by JUST
is similar to arity raising for functional languages and structure splitting in C-
Mix [4, 22]. However, in both cases, complex data is replaced with local variables,
which is only appropriate for stack allocated data (global variables can also be
used for structure splitting, but are inappropriate for storing information asso-
ciated with individual object instances). Partial evaluation for object-oriented
languages as embodied by JSpec was described in Sect. 2; its technical and con-
ceptual limitations was a primary motivation for this work. We note that the
control-flow simplifications performed by JSpec are a superset of those found in
JUST, but JSpec does not perform any simplifications of the data representation,
which limits the degree of optimization. Most other approaches to partial eval-
uation for object-oriented languages typically residualize specialized programs
by unfolding all method calls into a single method, and hence do not address
issues related to inheritance in the residual program, although object splitting
and caching of statically allocated objects has been investigated [2, 9, 16].

Type specialization is an alternative approach to partial evaluation based
on type inference, where a functional program can be specialized for the type
of the data that it manipulates [14, 19]. Similarly to JUST, singleton types are
used to specialize for concrete values; both the implementation of functions,
their types, and the datatypes that they manipulate are specialized. To some
extent, JUST can be considered as type specialization for the object-oriented
paradigm. Nonetheless, JUST automatically infers the binding time of each op-
eration, whereas type specialization requires the programmer to manually control
specialization of the entire program using binding-time annotations.

The triggering of optimization in JUST and the propagation of type infor-
mation is similar to customization [8] and its generalization selective argument

specialization [13]. Here, a method is optimized based on profile information by
propagating type information about the this argument and the formal param-
eters throughout the method, and using this type information to reduce virtual
dispatches. JUST is more aggressive than selective argument specialization, since
it specializes both for type information and concrete values and also specializes
the data representation, but it has no similar automatic provisions for detecting
invariants and limiting the amount of specialization.

6 Conclusion and Future Work

In this paper, we have presented JUST, a language that unifies inheritance and
partial evaluation. By using covariant type declarations, the programmer can be



guaranteed an efficient implementation of highly generic program parts, where
both computations and data representation are optimized to the task at hand.
Ideally, the covariant declarations that one would normally perform when pro-
gramming would automatically result in an efficient implementation; this idea
remains to be tested in large-scale experiments, however.

JUST offers a new perspective on inheritance: covariant specialization can be
used to declare information that gives a more precise description of the intention
of a given subclass and at the same time automatically triggers the generation
of an efficient implementation of this class. Conversely, JUST also offers a new
perspective on partial evaluation for object-oriented languages: integration with
the inheritance structure opens new opportunities for specialization, which can
be exploited using simple and predictable techniques. In effect, we have unified
two concepts until now considered different in a novel and useful way.

In terms of future work, we are interested in developing a type system for
JUST. Covariant singleton types for e.g. method parameters are inferred by the
specialization process, so type checking must either include the complete special-
ization process (and hence risk non-termination) or perform an approximation.
A useful compromise which we are currently investigating is to allow the type
checker to consume a fixed number of resources. If type checking cannot be done
within the predetermined limit, the program is considered “unsafe,” and the pro-
grammer can then either accept the program as such, or increase the resource
limit. Alternatively, multimethods may be more appropriate for safely imple-
menting the use of covariant types found in JUST. Another issue is controlling
the degree of specialization performed by the partial evaluator. We believe it
would be useful to separate the declaration of how to specialize (that is, the
covariant type declarations in JUST) from what to specialize. Different scenarios
may require exploiting different invariants for optimal performance, for exam-
ple depending on the physical characteristics of the processor. To this end, we
are currently investigating the use of aspect-oriented programming to allow the
programmer to explicitly declare what program parts to specialize.
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